
• To Build a ML model with the ability to map the evolution of a non-stationary 
wavefunction over time, without having to solve the TDSE directly.

• A Recurrent Neural Network (RNN) based model will be used to recognize 
patterns in data and predict the next likely scenario.

• By using a Trajectory-guided method, allows us to give an accurate yet compact 
explanation of our time-dependent wavefunction.

• As shown above, This is done by expressing the wavefunction as a combination 
of these “trajectories”, which means that we can express the overall 
wavefunction as a product of both position (x) and coefficients (c) against the 
number of trajectories. Just like the equation below:

Ψ =
(σ𝑥 ⋅ 𝑐)
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• Quantum Dynamics (QD) refers to the motions of sub-atomic matter, essentially 
it is the quantum version of Classical (or Newtonian) mechanics.

• QD comes from the foundations of quantum theory, which was build upon the 
ideas of early 20th century Nobel laureates Albert Einstein, Max Planck and 
Niels Bohr. Which was then developed into Quantum Mechanics, accredited to 
Werner Heisenberg.

• Currently, the best way to describe the QD is through solving the time-
dependent Schrodinger equation (TDSE):
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• However, this is mathematically complex to solve and computationally is very 
time-consuming. So, is there a better way to do this?

• Machine learning (ML) has been applied to study time-evolving processes, such 
as stock prices and the weather, but can it be applied to quantum dynamics?

• Promising results have come from implementing artificial neural networks 
(ANN), a form of machine learning, into the TDSE in 1 and 2 dimensions. [1]
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• A type of RNN called a long short-term 
memory (LSTM) model is used.

• This model uses the previous time 
      step output as the next input of 
      the current step, allowing the 
      LSTM cell’s long-term memory 
      to be implemented so even 
     more parameters can be learnt.

• By expressing the wavefunction 
      as a product of position and 
      coefficient, we have two LSTM 
      models trained on each parameter,      
respectively.
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• Before testing, we trained the 
model via learning individual 
parameters (x and c     
separately) and then together, 
the test  concluded that 
individual training produced   the 
best results

• For testing, the model was 
trained on generated 
Hamiltonians based upon the 
transitional modes of 
salicylaldimine proton                       
transfer[2]

• This data has 36 modes, which 
means that the model can be 
trained and then tested on 
different Hamiltonians

▪ Predicted Ψ
▪ True Ψ

Salicylaldimine Ψ prediction 

• This image shows the predicted Vs True wavefunction of a generated 
Salicylaldimine proton transfer.

• This is a product of both the True Vs predicted positions
     and coefficients.

• The examples given are taken from the 7th Trajectory of 
      Salicylaldimine, which is just an arbitrary value.

• These results are just some of the predictions from
      Simulations, but they’re accurate and exciting results.

• The project aimed to provide an alternative to solving the TDSE directly, using 
machine learning.

• The project is far from over, but for an 8-week Summer Project it has proved 
exciting results into the uses of machine learning in quantum dynamics. 
Particularly, its predictive effects of time-series data.

So, what’s next?
• Continue testing on more complex and a wider range of time-series data.
• Implementing an uncertainty metric, so the code can decide when it knows 

enough to take over.
• Currently, built as post-processing approach, therefore convert the code to be 

used during propagation of complex systems.
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